MachineLearning & DeepLearning
Optimizer
CartPole(OpenAI Gym) with DQN
Deep Q-Learning
Q-Learning(GridWorld)
GridWorld(OpenAI Gym)
OpenAI Gym
RL Algorithm
Bellman Equation
RL terms
Markov Decision Process, MDP
Reinforcement Learning, RL
GAN Applications
about GAN
Training DCGAN model(detail)
Training DCGAN model(WGAN-GP)
Wasserstein-1(WGAN)
DCGAN Generator & Discriminator
Transposed Convolution & Batch Normalization(DCGAN)
Training GAN model(detail)
Training GAN model
Data Preprocess
GAN Generator & Discriminator
Google Colaboratory
Generator / Discriminator & value function
Auto encoder & Generative model
save & load
Transformer model
Language modeling 3_evaluate
Language modeling 2_RNN model
Language modeling 1_preprocess
Haar Cascades
Sentiment Analysis(IMDb) 4_SimpleRNN
Sentiment Analysis(IMDb) 3_LSTM
Unknown Face Classifier
OpenCV
Sentiment Analysis(IMDb) 2_embedding
tf.py_function()
Sentiment Analysis(IMDb) 1_preprocess
LSTM
Output recurrent & Hidden layer recurrent
BPTT
Recurrent & Convolutional & Recursive
Back propagation
CNN backpropagation
RNN for Sequential data
Sequential data
CNN model for Celeb_a dataset
Celeb_a dataset(self making)
Celeb-A dataset preprocess(CNN)
CNN with Tensorflow(MNIST)
Loss Functions
Loss Function for Classified
Drop-out(Regulation)
Multi inputs & Color Channel
CNN, output size
Padding & SubSampling(pooling)
Discrete convolution
CNN Structure(details)
CNN Structure
kerase Model to Estimator
MNIST Classfier with Estimator
BoostedTreeRegressor(with Estimator)
Tensorflow Estimator(train & evaluate & predict)
Auto MPG
Tensorflow Estimator(feature_column)
XOR data
Users set Keras layers(build Layers)
Model class(build model) & train_step
Functional API(build model)
XOR classified(mlxtend)
Sequential API(build model)
Automatic differentiation & GradientTape
Tensorflow Variables
Function decoration
Tensorflow Computing Graph(v1 & v2)
activation functions
Activation function(ReLU)
Activation function(Hyperbolic tangent)
Activation function(Sigmoid & Softmax)
TensorBoard
Keras callback
MLP with iris datasets(keras.Sequential)
Linear Regression(with Keras.models)
TensorFlow neural modeling(with tf.keras)
tensor-datasets(load)
Celeb_a(self making)
tensor-datasets(builder)
image to Dataset
Build Dataset(preprocess, transform)
Using TensorFlow
TensorFlow
Models(Tricks) not covered in Books
NeuralNetMLP(details explain)
NeuralNetMLP
MNIST
Handwriting Classification(MNIST)
Forward Propagation
With MLP, function modeling
Spectral clustering(Graph-based clustering)
DBSCAN
Hierarchical clustering
FCM(Soft clustering)
Simple clustering data
elbow method & silhouette plot(evaluate method)
Clustering type
k-means & k-means++
SVM regressor(Kernel for Un-linear)
Bagging & Boosting
Decision & Random Forest Regressor(Un-Linear)
PolynomialFeatures Regression(Un-Linear)
Regulation
Linear Regression Model Evaluate
RANSAC Regressor(omit outlier)
Linear least squares
House data
Analyzing House data set
Linear Regression
Distribute Application(pythonAnywhere)
Movie Review Web Application
Web data Collect(WTForms)
Web Application(Flask)
Saved data(SQLite)
Save Trained estimator(with pickle)
Topic Modeling
out-of-core learning
Naver Movie Review Classfier
Text Classified with Logistic Regression
text Preprocessing
BoW model
IMDb text data
Sentiment analysis & Get Data
Gradient boosting(boosting)
Boosting(AdaBoost, Adaptive Boosting)
Bootstrap aggregating(Bagging)
Ensemble evaluate & tunning
Majority voting & Plurality voting
Ensemble learning
Multiple & imbalanced classified
ROC
REC & PRE
confusion Matrix
Nested cross-validation
Grid search CV
KFold vs StratifiedKFold
Algorithm Debuging(model evaluate)
Model evaluation
Wisconsin Dianostic Breast Cancer(WDBC)
Pipeline
Kernel Principle Component Analysis, KPCA(feature extraction) 2
Kernel Principle Component Analysis, KPCA(feature extraction) 1
Linear Discriminant Analysis, LDA(feature extraction)
plot_decision_regions
Principal Component Analysis, PCA(feature extraction)
Feature importances(with random forest)
Dimensionality(feature selection)
Regularization
Feature scaling
Wine data
Classify train data & test data
One-Hot Encoding
Categorical data
Data preprocessing(NaN)
parametric model & nonparametric model
K-Nearest Neighbor
Random forest(Decision Tree)
Iris data
Decision Tree
Kernel SVM
Soft margin classification
Support Vector Machine
Overfitting
Logistic regression
Scikit-learn
ADALINE(with SGD)
BGD & SGD & MSGD
ADALINE
Perceptron
Python tool for Machine Learning
Pipeline of Machine Learning
Basic Term
Machine Learning